时间序列算法Time Series Algorithm和Arima模型代写

时间序列算法(Time Series Algorithm)只是一组与时间相关的有序数据点。分析由不同的算法或方法组成,用于提取数据的某些统计信息和特征,以便根据存储的过去时间序列数据预测未来的值。ARIMA模型(Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是”自回归”,p为自回归项数;MA为”滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

作为专业的留学生服务机构,AcademicPhD多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课考试管理等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

时间序列算法Time Series Algorithm和Arima模型代写

时间序列算法特点

时间序列算法仍然是决定未来市场表现的重要因素之一。时间序列算法关于确定股票的价格趋势,预测,还是销售,理解模式和统计涉及时间对任何组织都是至关重要的。此外,时间序列数据通常绘制在折线图上。这是因为单个数据点与时间的间隔是相等的,因此时间就成为被调查数据的自变量。它以这种方式呈现,这样相关性 (如果存在的话)就可以很容易地显示出来。

Arima模型特点

  • 不直接考虑其他相关随机变量的变化。
  • 根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。
  • 对非平稳的时间序列数据进行平稳化处理。直到处理后的自相关函数和偏自相关函数的数值非显著非零。
  • 参数估计,检验是否具有统计意义。
  • 假设检验,判断(诊断)残差序列是否为白噪声序列。
  • 利用已通过检验的模型进行预测。

时间序列算法Time Series Algorithm和Arima模型还可以用于其他特殊领域:预算报告与分析(Budgetary analysis), 股票市场分析( Stock Market Analysis)等都需要这部分专业知识。如有代写需求,欢迎咨询AcademicPhD!